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SUMMARY

Theoretical approximations to the nondimensional 1ift and pitching
moment produced by constant vertical acceleration, the CLg and Cmg

derivatives, respectively, are derived for a series of thin sweptback
tapered wings with streamwise tips. The analysis is essentially the

application of a recently published solution of the linearized time-

dependent wave equation for wings in accelerated motion. The results
are independent of camber and thickness and are applicable for a range
of supersohic speed for which the wing is wholly contained between the
Mach cones springing from the wing apex and from the trailing edge. of
the root section (subsonic leading edge and supersonic trailing edge).

Design curves are presented which permit rapid estimation of the
derivatives Crg -and Cmg, for given values of aspect ratio, taper

ratio, Mach number, and leading-edge sweep.
INTRODUCTION

The formulations of linearized supersonic aerodynamics have allowed
the theoretical derivation of many of the important longitudinal- and
lateral-stability derivatives of various wing configurations. Recently,
attention has been focused on the sweptback tapered wing with wing tips
parallel to the wing plane of symmetry (hereinafter referred to as the
"sweptback tapered wing"). Available stability derivatives for this

wing for a wide range of Mach number now include the lift-curve slope Cr.,

references 1 to 3; the damping-in-roll derivative Czp, references 2 to L;
the lateral-force and yawing-moment derivatives CYp and Cnp;
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-respectively, references 5 and 6; and the longitudinal derivatives Cmg,
(pitching moment due to angle of attack), CLg (1ift due to pitching),

and Cp., (damping in pitch), reference T.
q 2

The present paper is an extension of the previous investigations
dealing with the sweptback tapered wing traveling at supersonic speeds
and is concerned with the 1lift and the pitching moment resulting from
constant vertical acceleration, the Crg and Cp; derivatives, respec-

tively. Theoretical expressions are derived herein which approximate
with practical accuracy these two acceleration derivatives.

Basically, the analysis depends upon the solution of the linearized
time-dependent wave equation for wings in accelerated motion reported by
Gardner and by Watkins in references 8 and 9, respectively, and the appli-
cation thereof to triangular wings in reference 10. . The analyses of refer-
ences 8 and 9 have in effect demonstrated that for a wing the time-
dependent potential for constant vertical acceleration may be compounded
of two time-free or steady-state potentials, one for angle of attack and
the other for steady-state pitching. In terms of forces and moments,
the analysis of reference 10 shows that such a decomposition of the ‘time--
dependent potential allows the derivatives Crg, and Cmg to be

expressed in terms of the steady-state-pitching and angle-of-attack
derivatives (qu, Cmq, and Cma> plus additional terms dependent

upon the surface velocity pdtential and corresponding pressure function
for constant angle of attack. The results of reference 10 and the
present results for the Crg and Cpg derivatives are restricted to

relatively slow rates of acceleration such as arise in thé study of air-
plane stability. Approximate expressions for the derivatives CL,, Cmy,

CLq, and Cmq for use in the evaluation of the derivatives of sweptback

wings contained in this paper have previously been determined in refer-
ences 3 and 7. Approximate expressions for the terms dependent upon the
surface velocity potential and corresponding pressure distribution are
derived herein. ’

The results of the analysis are applicable for a range of Mach-
number which allows the leading edge to be subsonic and the trailing
edge to be supersonic with the additional trivial limitation that the
Mach lines from the leading edge of the wing tip cannot intersect on
the wing or intersect the opposite wing edges. Design curves are pre-
sented which permit rapid estimations of the derivatives Cry, and Cmg,

for given values of aspeép ratio, taper ratio, Mach number, and leading-
edge sweep. ' '
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SYMBOLS

X,¥,Z Cartesian coordinates of an arbitrary point

' Uy,Vy,Wy; induced flow velocities along x, y, and z body axes, respec-
tively (see fig. 2(a))

u,v,w  incremental flight velocities along x, y, and z stability
axes, respectively (see fig. 2(b))

X,Y,Z forces parallel to x-, y-, z-axes, respectively |

A flight speed

o angle of attack (w/V)

& rate of change of o with time (da/dt) |

q v pitching velocity about y-axis

M stream Mach number (V/Speed of souhd)

v - Mach angle

B cotangént of Mach angle <VM2 - l>

€ angle between leading edge and axis of wihg symmeﬁry (see
fig. 1(a)) '

A taper ratio of wing

A leading-edge sweep (90° - €)

90=ta.n.€

® angle between trailing edge and axis of symmetry (see fig. 1l(a))

tan ¢

m = Tan 6.8
. . 2cr0, 46, hm

w geometric parameter of wing 5 - AL %) T AB(L + )

tan €
n= = 1-(1-MNo

= L

V k0

e}
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wing span
x-component of center-of-gravity position
wing root chord

over-all length
2 b/2 2
mean aerodynamic chord §L/ﬁ " (Local chord)“dy =
0 ’ ,
2e,[3P - (1 - n) + (1

- n)ﬂ)
30°(1 + 1) |

distance of leading edge of local wing chord behind apex of
_wing : '

wing area
aspect ratio of wing

steady-state potential corresponding to a unit pitching
velocity about y-axis

steady-state poteﬂtial corresponding to unit angle of attack
perfurbation velocity potential on upﬁer surface of wing
time |

speed of sound.

density of air

local pressure difference between lower and upper surfaces of
‘airfoil, positive in sense of lift

1ift distribution for unit pitching velocity
lift distribution for unit angle of attack

/
pressure coefficient iéE§>
2o

pitching moment
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T
Cn pitching-moment coefficient 1 M2 -
=pV Sc
2
cr, 1ift coefficient ﬁlf;
: =pV-Ss.
2

o _ (Xm
Ta — \oa a—>0
o - oCy,
Lq 4%

2V/q—>0
o - Cp

2v/.

q—>0

<CLOL>1 CLy + 2Cmg

Bff X
CLQ> == % as
< 2 Sc Wing v
A CANREC
ta = |J&2 T pe\ta/ T p VR,

v

a&—>0

S e . 7S .) - @ .)
Mo T \Nac 32<m@1 B2\ "M /p
2V/s_ 50
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Ei(m) | complete elliptic 1ntegral of the second kind with modulus k

(f“f_‘;;dz)

E"(m) = ET%57 (see fig. 3)

When x, y, and t are used as subscripts, the respective partial
derivative is indicated. For example,

g = %Q Bt %2%;

Primed symbols X', AP', and ¢' refer to the wing-tip region shown
in figure 1. ‘

ANALYSIS

Scope

The sweptback wings considered in this paper are sketched in fig-
ure 1. 1In the following analysis, the plan form with sweptback trailing
edge (fig. 1(a)) is generally considered to be the typical wing, but the
results of the analysis are equally valid for the wing plan form with
the sweptforward trailing edge (fig. 1(b)). The orientation of the wing
with respect to a body system of coordinate axes used in the analysis is
indicated in figure 2(a). The surface velocity potential, the basic
pressure distribution, and the stability derivatives are derived with
respect to this system. Figure 2(b) shows the wing orientated with
respect to the stability axes system with the origin of the system at
the arbitrary location (X, O, 0) rearward of the apex of the wing. The
transformation formulas that allow the determination of the derivatives
with respect to the stability system once they are evaluated with
respect to the body axes system are presented in table I.

The analysis is limited to wings having small thickness and camber
and that are not yawed with respect to the free-stream direction. The
derivatives are valid only for a range of supersonic speed which allows
the leading edge to be subsonic and the trailing edge to be supersonic.
The terms "subsonic leading edge" and "supersonic trailing edge" refer
to the conditions that the Mach number of the stream component normsl to
the leading edge is less than 1 and that the Mach number of the stream
component normal to the trailing edge is greater than 1, respectively.
An additional trivial restriction is that the Mach lines emanating from

,z
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the wing tips cannot intersect on the wing. These conditions, expressed
mathematically as restrictions for B cot A, are as follows: For

BA(L + ) =2

BA(L + A) < -
BA(L + N) + H(L = n) = Bcot AS1
and for BA(l + ) <2
BA(L + 2) <BcotAS BA(1 + )

BA(L + &) + B(L - ») - =% - BA(L + X)

Basic Considerations

The derivation of the derivatives Cry and Cps basically depends

upon the solution of the linearized potential equation for time-
dependent motion

2 v -1 :
B x = Pyy * 2 Bt T2 iy = O (1)
‘required to fulfill the boundary condition on the wing (approximately
in the 2z = 0 plane) :
&P v
Z

It was reported in the section of the analysis of reference 10
dealing with the acceleration derivatives of triangular wings that
Gardner has, in effect, shown that a proper solution of equation (1) is

M2 M2 .
§=B—e“’+('v?>x 2)

where V¥ 1is the steady-state potential corresponding to a unit pitching
velocity about the y-axis and X 1is the steady-state potential corre-
sponding to a unit angle of attack. Thus, the solution by Gardner and

an essentially equivalent solution by Watkins (reference 9) allow the
time-dependent potential for an angle of attack at to be expressed in
terms of two time-independent or steady-state potentials, one for a
constant angle of attack and the other for steady pitching. The appli-
cation of the solution expressed in equation (2) permits with relative
ease the evaluation of the pressure distribution for vertical motion
with constant acceleration. The corresponding derivatives CLg, and Cmg
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may then be derived rather simply in terms of integral expressions of
the surface velocity potential and surface pressure distribution for
constant unit angle of attack together with terms involving the non-
dimensional forces and moments associated with angle of attack and :
steady pitching. The general formal levelopment of the derivatives Crg

and Cps; based upon the velocity potential expression of equation (2)
has been carried out in reference 10. Adhering to the analysis in that

paper, the lifting-pressure distribution at time = 0 for the angle
of attack &t 1is obtained from the surface velocity potential by

20‘<V¢x ¥ th)*c=o

AP

[

2
20Voc<l;% vy, - XX

];igEﬁmP)q:l - (8R)y - 2p>]

(3)

It

v

where (AP) g=1

is the 1ift distribution for unit pitching velocity

about the y-axis and (AP)Q_
attack. The choice’ of time t

is the 1lift distribution for unit angle of
0 eliminates the 1lift due to angle of

attack and leaves only the increment due to time rate of change of angle
of attack. )

Integration of equation (3) to obtain the 1ift and moment and
reduction to coefficient forms yields

2 2 :
M- M=
CLy = == CLg + k[7ﬁ ds (L)
a " g2t g2 " B2t
e} ) :
M oM AP 8 X
Cm. = — Cnm ff — ds + f/;c—ds (5)
mg, 2 Bes_e %pVE : B25z2 ‘ v

a=1

where the integrations are performed over the wing plan form. For .

convenience, the following symbols will be used:

<C'Ld>l = CL, + 2Cn,
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sO that

and, similarly,

so that

M° 1

c.. = 4 (o ) -—(c.)

Satisfactory approximate expressions for the derivatives Cng, CLq,
and Cmq that occur in equations (4) and (5) for Crg and Cpg,

respectively, have previously been determined and presented in refer-
ence T for the wing plan forms and Mach number range considered in this’
paper. The double integral terms remain to be evaluated for a complete
estimation of Crs, and Cm&' These integrals and the approximate

expressions therein for the potential X and the pressure (AP)a=l are
considered in the following sections.

, X
Expressions for the integrals kzyn% dS and L/]Dx v dS.- An approxi-

mation to the steady-state surface velocity potential of a sweptback wing
at a unit angle of attack has been derived in reference 3. The entire
approximation occurs in the expression for the surface velocity potential
for the region of the wing internal to the Mach cones from the leading
edge of the wing tips. For the region of the wing external to the wing-
tip Mach cones, the velocity potential distribution is exact and is the
same as the linearized potential distribution for the corresponding part
of a triangular wing for the same leading-edge sweep and Mach number.



10 ‘ | | NACA TN 2315

The surface velocity potential for the triangular wing may be derived
from the analysis of reference 11 and is expressed as follows for the
upper surface of the wing for unit angle of attack: ’

g eroexe -
04

E'(m)

or

) Voox\L - v2 | )

X = —Em

where ¥ 1is a conical coordinate y/Gox propértional to the slope of
a ray from the apex ‘of the wing and E'(m) is the complete elliptic

integral of the second kind dependent upon m = Eaﬂ €.
’ : an u

1 .
of E (m with m 1is presented in figure 3. From reference 3, the
corresponding approximate expression for the potential of the wing-tip
region is given by

The variation

x - - 2 (2l )by Ar) (7)

The approximate surface velocity potential for the entire wing for a

unit angle of attack is then the sum of the expressions (6) and (7).

The integral terms of equations (4) and (5) containing X may now be
expressed in the following form (see fig. U4 for regions):

© 166
28-/:[ \)v(ds_z_————g_o /f ’ x\,i—v2d8+
B=SC JJ ying B<SCE '(m) YJ Region v

oegh

322 | |

efg
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and

S TRy
x 245 = x° 1 - V° as +
B2sE° v B2ST2E ' (m) 2E' R |

Wing egion
oegh

32y2 -
7Besc2\B(1 + m) /];eglon x\(mx + By)(b - 2y) dS

efg

(9)

The quasi-conical nature of the integrands (that is, of the form x"f(v)
of the first integrals of the right-hand side of equations (8) and (9)
allows these integrals to be easily evaluated by use of the "triangular"
integration procedure considered in reference 12, When this procedure

is used, the integrand xyl - ve as may be written as
Region ohgo Region ogeo
- : 3 3 =
%%390 Vi \/23(1v 21(:L+mb V1 Y ay
(1 - nv) O (1 + mv)

and, similarly, the integrand xg\Jl - v° 8 becomes

Region ohgo Region ogeo

1k, -4 1(1+m4b” VL - 42
T Cr % av 3 ;¢
( ) 9,

1 -ny (1 + mv)
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Expression for the integral \jypxe ié£§ dS.- The evaluation of
‘ 2 a=1
o of AP\ ' . , s
the integral b-¢ T3 dS necessitates a knowledge of the lifting
—oV . : .
2 a=1

pressure for the wing at an angle of attack. For the region of the wing
external to the wing-tip Mach cones, the pressure distribution is merely
the exact linearized pressure distribution for the corresponding part of
the triangular wing for the same value of leading-edge sweep and Mach
number. From reference 11, the following expression may be obtained for
the lifting-pressure coefficient for a unit angle of attack

AP . _ )4-902}( ‘

1.2 B
V), E'm)\Eotx® - 57

or, in terms of the conical coordinate v = 3.’

: Lo ' ' ‘
i 2 B (14)
7V Joer  E'(m)L - v

The corresponding expression for the approximate lifting-pressure distri-
bution for the region of the wing internal to the wing-tip Mach cones has
been derived in reference 3. From therein, the llftlng-pressure coeffi-
cient for unit angle of attack is as follows:

et 8 [P
1 V2 —'nVl + BG
Ep a=1

(15)

Substitution of the sum of the component pressures expressed by equa-
tions (14) and (15) for iégg of the integral to be evaluated yields

—oV
2P a=1
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RESULTS AND DISCUSSION

The preceding section involved the evaluation of the acceleration
derivatives Cr; and Cp; as functions of the steady-state pitching

derivatives (CLq, Cme, » Cmq determined in reference 7 and the several

integral terms determined herein which are functions of the surface
velocity potential and the corresponding pressure distribution for con-
stant unit angle of attack. The evaluation of these derivatives are
approximate in that the contribution of the wing-tip region was obtained
by use of an approximate surface velocity potential derived in refer-
ences 3 and 7 by use of the point-source method of Evvard.

; An indication of the lifting-pressure distribution over a typical
wing (sketched in fig. 5) for three Mach line configurations can be
obtained from figure 6. Figure 6(a) shows the pressure distribution for
the case of a subsonic leading edge and a supersonic trailing edge;
figure 6(b), for a subsonic leading edge and a sonic trailing edge; and
figure 6(c), for a sonic leading edge and a supersonic trailing edge.

As expected, a pronounced finite drop in the resultant lifting pressure
occurs across the inboard Mach line from the wing tip. The resultant
pressure distribution is generally negative for the wing plan form con-
sidered. For the Mach line configuration for which the leading edge is
sonic and the trailing edge is supersonic (fig. 6(c)), the pressure along
‘section a-a becomes slightly positive in the wing-tip region, in particu-
lar in the vicinity of the trailing edge. Results of additional computa-
tions for the variation of pressure loadings with aspect ratio indicate
that, as the aspect ratio is decreased, the resultant pressures tend to
become positive and eventually give rise to a positive (1lifting) force
(CLa) and a stable nose-down pitching moment (Cmd); whereas, for the

wing considered for figure 6, it is obvious that the integrated pres-
sures will produce a negative Crs and an unstable Cmd‘

The exact linearized solution for the lifting pressure in the wing-
tip region induced by constant vertical acceleration is not available at
present although extremely accurate approximations to the exact linearized
solution that require laborious calculations may be obtained by the
methods of reference 13. The present approximate method should be ade-
quate for determining the integrated 1lift and pitching moment, especially
since the pressures are relatively very small in the tip region where
the approximations of the method apply. For a practical evaluation of
the derivatives CL@ and Cmd it 'is believed that the wing-tip regions

may be completely neglected.

A series of generalized curves that allow rapid estimation of the
derivatives Cr, and Cmg, 1s presented in figures 7 and 8, respectively.




18 - NACA TN 2315

For specified values of aspect ratio, taper ratio, Mach number, and
. N M2 1
leading~edge sweep, the derivative Clﬁ, 32 <CLu)l BE <CL.) is esti-

M2 1 .
mated from figure 7 and the derlvatlve CmOL 32 (Cmd)l - - (Cmd>2 is

estimated from figure 8. In figures 7 and 8, the segmental dashed parts
of the design curves to the left of the boundary lines labeled

"Soni¢ T.E." should be disregarded for estimations; they correspond to
conditions not treated in this paper, for which the trailing edge is
subsonic (Mach lines ahead of trailing edge) and hence allows trailing-
edge disturbances to affect the part of the wing bounded by the Mach
lines from the trailing-edge apex and trailing edge itself. These
dashed parts have been presented, however, to indicate the trend of the
variations and to act as an upper limit below which the true values of
the derivatives would lie for configurations for which the trailing edge
is subsonic. The boundary lines labeled "Sonic L.E." indicate the

other limit of validity for which the Mach lines coincide with the
leading edge.

It should be noted that the derivatives determined from the design
curves of figures 7 and 8 are with respect to a set of axes located at
the apex of the wing. The derivatives with respect to an arbitrary
center-of-gravity location (x =X, y=0, 2z =0) in the stability axes
system may be easily obtalned by transformatlon formulas presented in

table I.

Specific variations of the derivatives Crg and Cmd (in the sta-

bility axes system) with each of the parameters - aspect ratio; taper
ratio, Mach number, and leading-edge sweep - are presented in figures 9
and 10, respectively. The variation of Cmg, with aspect ratio plotted

in figure 10 shows the interesting point, mentioned previously in the
discussion of the pressure distributions of figure 6, that the pitching
moment which is generally unstable at the higher aspect ratios becomes
stable as the aspect ratio is decreased (below aspect ratio of approx. 2.25
for the illustrative case shown). Similar results have been noted for

the rectangular wing (reference 14), the triangular wing (reference 10),

and the sweptback wing of zero taper ratio (reference 12).

CONCLUDING REMARKS

Theoretical approximations to the nondimensional 1lift and pitching
moment produced by constant vertical acceleration, the CLa and Cmd

derivatives, respectively, have been derived for a series of thin
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sweptback tapered wings with streamwise tips. Results are applicable

for a range of supersonic speed for which the wing is wholly contained
between the Mach cones springing from the wing apex and from the trailing
edge of the root section.

The results presented herein for the derivatives Cr; and Cpg are

applicable within the limitations of the linearized theory since the
approximation to the exact linearized solution in the wing-tip region
is satisfactory and this region has a minor effect on the values of the
derivatives for the entire wing. '

Langley Aeronautical Laboratory :
National Advisory Committee for Aeronautics
Langley Field, Va., December 22, 1950
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»
(a) Notation and body axes used in analysis.
v,Y -
V :
<, X
tab:ht &
i
w Z |
4
(b) Stability axes. Velocity, force, and moment arrangement in principal .
body axes system is the same as that of stability axes system.
(Principal body axes dashed in for comparison.)_ .

Figure 2.- System of axes and associated data.
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Figure 3.~ Variation of the elliptic integral factor
_ tan ¢
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> Y

~ Equation of eg: x B(g - > + 5%_
_ o

y+ crvtan 6
tan &

Equation of hf: x’=

Intersection of eg and hf:
(Bbby - 2cpbp *+ b) tan &
20o(B tan & + 1)

y

h

e
\ F: RN
X W/ng—f/p reg/on >

*‘!ﬂ:’,”

Figure 4.- Sketch of right panel of wing and associated data defining
- limits of integration for the evaluation of forces and moments.
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(a) Subsonic leading edge, supersonic trailing edge.

Figure 6.- Chordwise and spanwise pressure distributions along sectional
planes through the wing-tip region..
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(b) Subsonic leading edge, sonic trailing edge.

Figure 6.- Continued.
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Figure T7.- Continued.
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(c) Concluded.

Figure 7.- Concluded.
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Figure 8.- Continued.
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Figure 8.- Concluded.
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